I “An architecture for Scalable
Concurrent Embedded Software"

No more communication in your program,

I the key to multi-core and distributed
programming

Eric.Verhulst@altreonic.com

A[treonlc

www.altreonic.com

I Content

 Who's Altreonic ?
I * General context: Systems and Software Engineering
» About Moore’s imperfect law
 The von Neuman syndrome
* Why multicore, it is new?
» Where’s the programming model?
 The OpenComRTOS approach:

— Formally modeled

— Hubs and packet switching

— Small code size

— Virtual Single Processor model
— Scalability, portability, ...

— Visual Programming

www.altreonic.com

I Who's Altreonic?

I e Eonic (Eric Verhulst) : 1989 — 2001
— Parallel RTOS Virtuoso (=> Wind River Systems)

— Formally rooted in CSP (Hoare): “pragmatic
superset of CSP”

e Open License Society: 2004 — now:
— R&D on Systems and Software Engineering
— Unified Semantics & Interacting Entities
— Formally developed OpenComRTOS

 Altreonic: 2008 — now
— Commercialises and develops OLS results

www.altreonic.com 3

I General context: SE

in all stages for all activities
— => “Unified semantics”
« Conquer complexity: => “Interacting Entities”
I » Different views on same system, same semantics:
— Requirements, specifications
— Checkpoints, issues, change request
— Modeling & Simulation
— Failure view, testing view
— Verification view, validation view
— Workplan view

I » Systems/software engineering requires common language

www.altreonic.com 4

Unified Systems/Software engineering

Focus domain of
Systems2Trust:

Focus domain of OpenSpecs: jormalisedimodeling

formalised R&S capturing

nitectural
A":“o,dal(s]

User
Applications

. Common Formalised
Meta-Language

Unifying
Repository
(Formalised :]
Meta-Model)

Runtime environment
supporting distributed

<~ =) concurrency and
Common Systems S communication
Grammar
‘Semanti

Unifying paradigm:
Interacting Entities Platform with native support
____________________________ for distributed (fine-grain)
concurrency and
Systems2Trust project communication

Moore's law

e Moore’s law;

— Shrinking semicon features => more functionality and
more performance

» Rationale: clock speed can go up

* The catch is at system level:
» Datarates must follow
Memory access speed must follow
I/O speeds must follow
Througput (peak performance vs. latency (real-time behaviour)
Power consumption goes up as well (F?, Vcc)

« => Moore’s law is not perfect

www.altreonic.com 6

I The von Neuman syndrome

I * Von Neuman’s CPU:

— First general purpose reconfigurable logic
» Saves a lot of silicon (space vs. time)
» Separate silicon architecture from configuration
I — “program” in memory => “reprogrammable
— CPU state machine steps sequentially through program
— The catch:

» Programming language reflects the sequential nature of the von
Neuman CPU

» Underlying hardware is visible (C is abstract asm)
* Memory is much slower than CPU clock (PC: > 100 times!)
— Ignores real-world I/O
* Ignores that software are models of some (real) world
» Real world is concurrent with communication and synchronisation

www.altreonic.com 7

I Why Multi-Core?

I System-level:

— Trade space back for time and power:
e 2 X F > 2*F, when memory is considered

— Lower frequency => less power (~1/4)

— Embedded applications are heterogenous:
» Use function optimised cores

e The catch:
—Von Neuman programming model incomplete

— Distributed memory is faster but
* requires “Network-On- and Off-Chip”

www.altreonic.com 8

Multi-Core I1s not new

I * Most embedded devices have multi-core chips:

— GSM, set-up boxes: from RISC+DSP to
RISCs+DSPs+ASSP+... = MIMD

I — Not to be confused with SMP and SIMD

» Multi-core = manycore = parallel processing (board
or cabinet level) on a single chip

» Distributed processing widely used in control and
cluster farms

e The new kid in town = communication
— (on the chip)

www.altreonic.com 9

I Where’s the (new) programming model?

» Issue: what about the “old” software?
— =>von neuman => shared memory syndrome
— But: issue is not access to memory but integrity of

memory
I — But: issue is not bandwidth to memory, but latency
— Sequential programs have lost the information of the
inherent (often async) parallelism in the problem domain
* Most attempts (MPI, ...) just add a large
communication library:
— Issue: underlying hardware still visible

— Difficult for:
» Porting and Scalability
» Often application domain specific

www.altreonic.com 10

The OpenComRTOS approach

» Derived from a unified systems engineering
methodology

» Two keywords:

— Unified Semantics
» use of common “systems grammar”
e covers requirements, specifications, architecture, runtime, ...

— Interacting Entities (models almost any system)
« RTOS and embedded systems:
— Map very well on “interacting entities”
— Time and architecture mostly orthogonal
— Logical model is not communication but “interaction”

www.altreonic.com 11

The OpenComRTOS project

* Target systems:
— Multicore, parallel processors, networked systems,
include “legacy” processing nodes running old (RT)OS
* Methodology:
— Formal modeling and formal verification

e Architecture;

— Target is multi-node, hence communication is system-
level issue, not a programmer’s concern

— Scheduling is orthogonal issue

— An application function = a “task” or a set of “tasks”
» Composed of sequential “segments”
e Tasks synchronise and pass data (“interaction”)

www.altreonic.com 12

Interacting Entities Model

One possible mapping and compilation onto Trustworthy Embedded Components

R [1
‘I OpenComRTOS l OpenComRTOS
] |

OpenComRTOS

WWwW.dItreorme. Cornt 1S

Scalability of Interacting Entities models

OpenComRTOS
2 = g OpenComRTOS

L - - :
{ J ®

OpenComRTOS || | -)

‘ OpenComRTOS

- ®
OpenComRTOS ||

(J (J
OpenComRTOS
() @
OpenComRTOS
() J

OpenComRTOS

www.altreonic.com 14

The OpencomRTOS “HUB”

» Result of formal modeling

» Events, semaphores, FIFOs, Ports, resources, mailbox,
memory pools, etc. are all variants of a generic HUB

A HUB has 4 functional parts:
— Synchronisation point between Tasks
Stores task’s waiting state if needed

Predicate function: defines synchronisation conditions and lifts waiting
state of tasks

Synchronisation function: functional behavior after synchronisation:

can be anything, including passing data

» All HUBs operate system-wide, but transparently: Virtual
Single Processor programming model

» Possibility to create application specific hubs & services! =>
a new concurrent programming model

www.altreonic.com 15

The generic hub as metamodel

Data needs to -
be buffered hﬁ‘ Buffer List

Prioity Inheritance

For resources 74" Owner Task

|
—»‘ CeilingPriority ‘
|
|

For semaphores f—ﬂ Count

| w1 Predicate Action

Synchronisation —|

Synchronising
[Predicate

Synchronisation

w w
" . — L L
Waiting Lists T gl

Threshold —T-

Generic Hub (N-N)

Similar to Atomic Guarded Actions
Or
A pragmatic superset of CSP
16

All RTOS entities are “H

o m e

L
| |
| |
| |

BUFFER ARRAY of LINKED LIST of
: RESOURCE [NB] RESOURCE (i) :
| |
. T |
| :
| o] .
| ===] |
| P - | Wy |
1 =% | =8
| E == aa |
| |
1 i
| |
| MEMORY MAP SeR MEMORY POOL sR| |
| |
| |

SYNCHRONISATION + DATA TRANSFER

Virtual Single Processor
Application View Node Independent

—
=

Memory Pool

[
[
[—
(—

Memary Pod

Sending a
Packet

Packet Paol

J000

OpenComRTOS-L1
Application View
Node dependent

Packet Paq|

A

OpenComRT A

Application <
Node deper Communication Carrier
i J, &I Hardware Layer (1/0) I/
< Communication Carrier > 18

I Rich semantics: NW|W|WT|Async

L1 Start/Stop/Suspend/ResumeTask

L1 SetPriority

L1 SendTo/ReceiveFromHub

L1 Raise/TestForEvent (N)W(T)_Async

L1 Signal/TestSemaphore X

L1 Send/ReceivePacket X L1 WaitForAnyPacket X
L1 Enqueue/DequeueFIFO_ X

L1 Lock/UnlockResource X

L1 Allocate/DeallocatePacket X

L1 Get/ReleaseMemoryBlock X

L1 MoveData X

L1 SendMessageTo/ReceiveMessageFromMailbox X
L1 SetEventTimerList

... => user can create his own service!

www.altreonic.com

19

“Strange” semantics: _Async

Example:
L1 SendPacket A (Port)
L1 ReceivePacket A (Port)

I'_Hl'_WaitForAnyPacket_W
Asynchronous semantics are natural but tricky
Sending async is easy to understand
Receiving async: what does it mean?
But: packets are a limited resource

e => give each task a synchronisation credit = # packets

* When credit is depleted => resynchronise

Very handy for:

* Drivers

* Implementing “select” semantics (ALT ? and ALT ! In CSP)
e But requires more control by programmer

www.altreonic.com

20

- From function calling to %ckets as placeholders

Packets and Hubs

P
(©)]
r
t

What application sees

match

CO— =

]

== @ W

What system sees
www.altreonic.com

I Unexpected: RTOS 5-10x smaller

Reference is Virtuoso RTOS (ex-Eonic Systems)

New architectures benefits:

— Much easier to port

— Same functionilaty (and more) in 10x less code

— Smallest size SP: 1 KByte program, 200 byts of RAM
— Smallest size MP: 2 KBytes

— Full version MP: 5 KBytes

Why is small better ?
— Much better performance (less instructions)
— Less power
— Frees up more fast internal memory
— Easier to verify and modify

Architecture allows new services without changing the
RTOS kernel task!

www.altreonic.com 22

Clean architecture gives small code: fits in on-chip RAM

OpenComRTOS L1 code size figures (MLX16)

MP FULL SP SMALL
LO L1 LO L1

LO Port 162 132

L1 Hub shared 574 400
L1 Port 4 4
L1 Event 68 70
L1 Semaphore 54 54
L1 Resource 104 104
L1 FIFO 232 232
L1 Resource List 184 184
Total L1 services 1220 1048
Grand Total 3150 4532 996 2104

Smallest application: 1048 bytes program code and 198 bytes RAM (data)
(SP, 2 tasks with 2 Ports sending/receiving Packets in a loop, ANSI-C)

Number of instructions : 605 instructions for one loop (= 2 x context switches,

2 x LO_SendPacket_W, 2 x LO_ReceivePacket_W)

Probably the smallest MP-demo in the world

Code Size Data Size

Platform firmware 520 0
- 2 application tasks 230 1002, of which
- 2 UART Diriver tasks - Kernel stack: 100
- Kernel task 338 - Task stack: 4*64
- |dle task - ISR stack: 64

- |dle Stack: 50
- OpenComRTOS full MP
(NW, W, WT, A 3500 - 568
Total 4138 + 520 1002 + 568

Can be reduced to 1200 bytes code and 200 bytes RAM

www.altreonic.com

24

Stanc

ard processors (32bit)

OpenComRTOS L1 code size figures in bytes - Os

Full support I\zli((:)rglill?_'zs (IAI(I)E(I\)/III\I-IBZ) ARM Cortex M3
SP MP SP SP
Hub shared 4756 5096 4904 2018
L1 Port 8 8 8 4
L1 Event 88 88 72 36
L1 Semaphore 92 92 96 40
L1 Resource 96 96 76 40
L1 FIFO 356 356 332 140
L1 PacketPool 296 368 268 120
Total L1 services 5692 6104 5756 2398
Driver (IntC -Timer) 812 - 284 852 — 284 1224 - 536 -
Uart driver 932 -
Semaphore loop 33.64 usec 136.1 usec 52,66 usec
VYVYVV-SrEUTITC T zo

Interrupt latencies

* From IRQ to first useful instruction in ISR or Task

* Not a single figure, an application dependent histogram

What influences Interrupt latency?

» Hardware:
« Context switch
Bus congestion (multiple users)
DMAs
Peripherals disabling interrupts
“Special” support: HW loops, HW call stack
Interrupt controller
e Jump table
» Nesting capability, # int pins
» Software:
« Critical sections, interrupts disabling sections
» Data structures updating
» Kernel loop (must be as small as possible)
e In MP often multiple commands in kernel
» Compiler conventions

www.altreonic.com 27

Program once, run anywhere

» Ultra low power:
e CoolFlux DSP core (24bit, Harvard)
» Code size full kernel: 2000w PM + 750w data
 Interrupt latency:
 IRQto ISR: <112 cycles
* |IRQ to task: < 877 cycles
» Multicore capable
» Single chip multicore
 Intel SCC 48core “super computer on chip + NoC
switch” (in development)
O Heterogeneous targets:
e Win32+Linux+ARM+MicroBlaze+XMOS+LEON3+ ...
demo programmed as single target

28

I A Safe Virtual Machine for C

* Low memory needs (embedded!)
* Mobile, dynamic code
* Results:
» Selected ARM Thumb2 instruction set of VM target
 Compactness
Widely used CPU
3.8 Kbytes of code for VM
Executes binary compiled code
Capable of native execution on ARM targets
VM enhanced with safety support:
* Memory violations
» Stack violations
* Numerical exceptions

« Goal:
I » CPU independent programming

I Safe VM set-up

30

Universal packet switching

» Another new architectural concept in
OpenComRTOS is the use of “packets”.
— Used at all levels
— Replace service calls, system wide
— Easy to manipulate in datastructs
— Packet Pools replace memory management
e Some benefits:
— Safety and security
— No buffer overflow possible
— Self-throttling
— Less code, less copying

www.altreonic.com 31

Transparent communication

» Tasks only “communicate” via Hubs

* Real network topology
— Logical point-to-point links between nodes
— Node Rx and Tx link driver task for each link end
— Routing and gateway functionality

— Works on any medium: shared buses, “links”, “tunneling”
through legacy OS nodes using sockets, ...

— Heterogeneous and transparent parallel programming!
* Link driver tasks

— OpenComRTOS application task with (Tasklnput) Port

— Driver task type per link type (UART, TCP/IP, ...)

— Not present/visible on the (logical) application level

www.altreonic.com 32

I “Link” driver functionality

— LO_RxDriverFunction — retrieve packet from “wire”
* E.g. socket read for Win32, Linux, ..
I * E.g. buffered UART communication for embedded target

I « Target/link specific communication implementation

— LO_TxDriverFunction — put packet on “wire”
» E.g. socket write for Win32, Linux, ..
» E.g. buffered UART communication for embedded target

— network <-> host byte ordering functions
— Normal ISR framework can be used as applicable

« But fully transparent for the application software

www.altreonic.com 33

I Virtual Single Processor programming model

1 1
1 Node 4 !
1 1
: T L |
|

H L1_MemoryPool L1_PacketPool
v
Vi [viPet | [LiEvent | [L1Sema | [L1Resource | [L1 FIFO |
|
v
ol [LimaiBox | [L1_Channel | [Li_UserHub | L1 Hub Entities
e e
1
1 | Router ‘ | Kernel Task | | Task Scheduler ‘
INTERNODE LINK 1 INTERNODE LINK 2 INTERNODE LINK 3
LinkRX 1 | LinkTX 1 LinkRX 2 | LinkTx 2 LinkRX 3 | LinkTX 3
Link Driver Link Driver Link Driver
HW ISR HW ISR HW ISR
Node 1 Node 2 Node 3

Virtual Single Processor System

www.altreonic.com 34

X = Fib

- Open visual

Fle Edt View Buld Tools Help
P

E IR

!

a

Q@ LEON3 Q@ MicroBlaze

Q@ windows @Linux % % (@ f

7o)

-

= ology | Application
z
o

N

N

win32 nodel

S output Error st

win32inode2

>

Leon3 node

posix32_node

Fogdd|

Nodes

b

ual Environme

Ele » i a——

sapadosd

Tool support: Define Topology

~Topolegy [CApplication |

& (@ Nodel
Taskl
I Part_a
- PacketPooll
= @ Hode2
i [T] Taska
-~ [Port_B
~o E packetPoolz
£ @ Node3
b [T] Taska
I Part_c
v PacketPool3

{5003 | sapony | san|

= Cutput|

Node2

[Properties | &

=10f x|
File Edt ‘iew Build Help
ENAHE |6 2l e = 0 N @] a
?NDUES /Tepelogy) fpplication” | “asks.c | TMP-MCFdemo metsmadel | x |Fr0perties ‘E
% = &) Nodel 2 |lIarme | valus I
=5 Status LO_STARTED i
% - GtackSize 170
= - Priority 128
z o] Port - Node Hodel
= Name Taskl
- EntryPoint E_task1
- Arguments MNULL
-
< | E
4

www.altreonic.com

36

Tool support: C code Is

generate

MP-MLXdemo project - OpenComRTOS Visual Environment ;|E|_>_<J
File Edt View Buld Help
FO0aH@| %59 ei &
?WWES /Tty | ApplEation) tasks « | M- dams matsmnae] | x |properties ig
:I Q hode1 #include <11 _api.h> Mame | vaue [
Q : T o #include <llhub api.h> Status LO_STARTED ‘i
“m1| B @ Node2 #include <lOtask api.h> StackSize 170
2 [Port1 #include <10debug api.h> Priority 128
@ [T] Taskz Node Model
#include <10kernel data.h: Name Taskl
#include "l0Onodes_data.h" . EntryPoint E_taskl
#include "l0Onode config.h” - Arguments NULL
void E taskl(L0 TaskArguments Arguments)
{
while (1) {
}
L1l PutPacketToPort W{Portl);
Ll GetPacketFromPort W{PortZ);
}
vold E_taskZ (L0_TaskArguments Arguments)
{
while (1) {
Ll_GetPacketFromFort_w(Portl) ;
Ll_PutFacketToPort_w {Port2) ;
}
}
y

www.altreonic.com

37

Tool support: Run and trace

&3 OpenTracer 3530 Ml .

__ —

File Tracer Views Project Mode View Help
We-e- [R0@F- b - AT IAF v [Pa-2- PP
Node Tree N C:JUSB ¢ TOS_Suite_1.3_ARM_WIN: RTOS_Demos_Hannover/07_0_2ARM_TCP_Port Trace
@t openTracer > (B2 Amivodecoms Bk)
+ & G/OCR-Suite-13.31/Demos_up..
LI 111 ArmNodeComS5 A Tsfusec) Tp Argl Arg2 Ll '~ Tasks:
4 LJ C:/OCR-Suite-13.31/Demos_up.. | (234 2078612 2 2 152 @ [0] KernelTask
Ll [1]AmNode 235 2078617 N o o2 1157 @ [1] IdieTask
4 & C:/USB_Stick/OpenComRTOS Sui.. | (236 2078666 a4 2 1206 @ [2] bTaskrs232 Uartd
Ll [1] AmmMNodeComs 231 2078671 @ 0 79 @ [3] teTasktcp_tepl
Ll [21 ArmNodeComb: 38 2078677 ®|= 2 725 @ [4] txmitTask_tcpl
20 07682 ®= 2 0 | @ Bl Taskt
200 2078686 @ 1 785 = Hubs:
Property Yelve 241 2078823 @ 0[] 34 i [0] RxPacketPool
M TASK_EVENT 42 2078825 ® (4 2 736 i [1] KernelPacketPool
o 2002952 usec 243 2078836 ® = 2 747 0
44 207840 @ 2 121 Casks:
e 245 2078845 Lo 1216 | [0] KemelTask
] L1 SERVICE_COMPLETED | (246 2078848 @« 2 1219 @[] ldieTask
Se #J L1 SID_RECEVE FROM_HUB | [247 2078852 @ 0 751 @ 2] beTaskicp_tepl
Y 8 207858 @ % 2 56 @ [3] Task2
249 2078864 (& 2 762 rimitTask_tcpl
i [3] SemaTasia 250 2073368 & 2 1224 = " T
251 2078872 N« 2 1228
[0] KernelTask. 26.73%| | |252 2078901 o, 2 1257 | i [1] Semat
[1] Ideask C 1 30.15% | 253 2078906] 0 766 i [2] RxPacketPool
[2) bitasktep_tept 4285% | |54 2078911 ® a2 m Wl [3] KemelPacketPool
[3] Task2 0.04%| | |355 2078916 ®|w 2 776~
[4] rtxmitTask_tep! 0.22% < m » . !

www.altreonic.com

38

Under the hood

—_——————

KernelTask | Port

\

N
~

Port [DRV-T

|

N

—~—~ ——

www.altreonic.com

N ___——~.//

39

Heterogenous demo set-up

OpenComRTOS

Nodes: Leon3-WIN32-Linux-MicroBlaze
Each “node” runs on instance of

Only changes are the node-adresses
Source code everywhere the same:

L1 Put Packet ToPort W (Port1)

L1 Si gnal Semaphore W (Semal)

www.altreonic.com

40

Parallel sort

i

A

HEEH

SEE

£l &

33§ - F -
é\é E, A_node processpr_node AxB_node
3 7| 5

ged

|

S|

; i
pmdn(g" arallel B |ol'e
5|3 512
3l 18 i
- P L e
a3 = on3_node
5 % |5 o8 s -
: . H
£l Z|3
g z/5 b E1ES
5 B: 3/
E 5=~ i
$ 1#=
H ol
|
= [T] [T]
! comperafor_task1_0 comperagor_task1_1
| + o
£ i
producer_task § &
£ -
i i
& i
H H
| &
o a
1
H i
P20 L
~ ¥
L 5
g
H
£
%
bl
5
e, 2
%o, £
~E
& &
o
1_putPacketToPort iy

T Li_GetPacketFromPort W i L1 PutPacketToPart W
U o=-— L1 putPacketToPo i
consumer_task seridZconsumer ——acel = serial_task 41

Parallel matrix multiplication

¥y
B_riode
5 1 mlumn,%m,ﬁ
] 2 Bu. ™
£ H i
§A E A_node processpr_node AxB_node
Pl:ke(Frﬂ[T FutPacketToPm P lP‘(ke‘FroI’T'i ButPacketTomy k EtPacketF ronil| T!
chetFr oM W TRASRER Y RS kT Afpackiirri
- : <,
= mon e, L z_..&'@\,\% oot s 1,
i - N |
/ g % T i
E |i <Y B &
; ; i
P B El
) “poigy oty
3 i 3
i 12 & Leon3_node
£ £ &
13 I 22,
fe 1= 3 e,
& B,
L0cancueria B PacketT@ B E}:Ee(‘rﬂm‘ ButbackelT ol L <
oA o, o mt_1 e, it
3 g T
Y FR
I e
B e i %,
12 <& i
-] o] B
] B =i —0
Plﬁ'

[aSTers

B o i

v smasesy 5

&n}' P20 tasigmuizlie p2_L tas)
R o,
%
% E
s, |
e, £
Nk,

su}

&
3

res2_0 EB,[
G H =
o - ¢
ButPacketTom B Backetrrgy PutPacketTubd BPackatiromt T!‘ wpitackatTopdl [Packett oW T
Lo E = I - E “ sk _wunia,
B maid ot 20 23 [pa2 e,
e, / = ey
T, e,
St e,
s, N o
* Ry " o 42
| E] B
30 et

Roadmap

« Working on:

— Interaction Sequence Diagram editor

— Integration with MAST scheduleability analysis
— Flowchart editor with C Code generation

— Broadcast, barrier hubs

— Protocol hubs:
— Composing protocols from micro-protocols

— Dynamic resource scheduling
— Transparent fault tolerance
— Back-end formal verification

www.altreonic.com 43

Prototype Interaction Sequence Chart

W OpenComRTOS Graphical Host Service 1T - |EI |£|
Tasks and Hubs names

Task1 Portl Eventl Task2

L1_GetPacketFromPort W

Interaction name | 1_putPacketToPort_W

Sequential block

Condition —.
x> 10} Biock ' x=z;
begin L1_TestEvent_W

L1_RaiseEvent_W
X+
[end]
Timeline

I Conclusions

« OpenComRTOS is breakthrough “RTOS 2.0”

I — Network-centric => system communication layer

— Priority or timer based scheduling => RTOS

— Formally developed

— Fully scalable, very safe, very small

— Better performance

— Portable & user-extensible

— => Concurrent programming model

— => works for any type of “multicore” target

« Contact: Eric.Verhulst @ altreonic.com

www.altreonic.com 45

I From theoretical concept
I to products

I From Deep Space to Deep Sea

Altreonic

“If it doesn't work, it must be art.
If it does, it was real engineering”

www.altreonic.com 46

