
“An architecture for Scalable
Concurrent Embedded Software"

No more communication in your program,
the key to multi-core and distributed

programming .

www.altreonic.com 1

programming .

Eric.Verhulst@altreonic.com

Content
• Who’s Altreonic ?

• General context: Systems and Software Engineering

• About Moore’s imperfect law

• The von Neuman syndrome

• Why multicore, it is new?

• Where’s the programming model?

www.altreonic.com 2

• Where’s the programming model?

• The OpenComRTOS approach:
– Formally modeled
– Hubs and packet switching

– Small code size

– Virtual Single Processor model
– Scalability, portability, ...

– Visual Programming

Who’s Altreonic?

• Eonic (Eric Verhulst) : 1989 – 2001
– Parallel RTOS Virtuoso (=> Wind River Systems)

– Formally rooted in CSP (Hoare): “pragmatic
superset of CSP”

• Open License Society: 2004 – now:

www.altreonic.com 3

• Open License Society: 2004 – now:
– R&D on Systems and Software Engineering

– Unified Semantics & Interacting Entities

– Formally developed OpenComRTOS

• Altreonic: 2008 – now
– Commercialises and develops OLS results

General context: SE
• Systems/software engineering requires common language

in all stages for all activities

– => “Unified semantics”
• Conquer complexity: => “Interacting Entities”
• Different views on same system, same semantics:

– Requirements, specifications

www.altreonic.com 4

– Requirements, specifications

– Checkpoints, issues, change request

– Modeling & Simulation

– Failure view, testing view

– Verification view, validation view

– Workplan view

Unified Systems/Software engineering

www.altreonic.com 5

Moore’s law

• Moore’s law:
– Shrinking semicon features => more functionality and

more performance

• Rationale: clock speed can go up

• The catch is at system level:

www.altreonic.com 6

• Datarates must follow

• Memory access speed must follow

• I/O speeds must follow
• Througput (peak performance vs. latency (real-time behaviour)

• Power consumption goes up as well (F2, Vcc)

• => Moore’s law is not perfect

The von Neuman syndrome
• Von Neuman’s CPU:

– First general purpose reconfigurable logic
• Saves a lot of silicon (space vs. time)
• Separate silicon architecture from configuration

– “program” in memory => “reprogrammable

– CPU state machine steps sequentially through program

www.altreonic.com 7

– The catch:
• Programming language reflects the sequential nature of the von

Neuman CPU

• Underlying hardware is visible (C is abstract asm)

• Memory is much slower than CPU clock (PC: > 100 times!)
– Ignores real-world I/O

• Ignores that software are models of some (real) world

• Real world is concurrent with communication and synchronisation

Why Multi-Core?

• System-level:
– Trade space back for time and power:

• 2 x F > 2*F, when memory is considered

– Lower frequency => less power (~1/4)

– Embedded applications are heterogenous:

www.altreonic.com 8

– Embedded applications are heterogenous:
• Use function optimised cores

• The catch:
– Von Neuman programming model incomplete

– Distributed memory is faster but
• requires “Network-On- and Off-Chip”

Multi-Core is not new

• Most embedded devices have multi-core chips:
– GSM, set-up boxes: from RISC+DSP to

RISCs+DSPs+ASSP+... = MIMD

– Not to be confused with SMP and SIMD

• Multi-core = manycore = parallel processing (board
or cabinet level) on a single chip

www.altreonic.com 9

or cabinet level) on a single chip

• Distributed processing widely used in control and
cluster farms

• The new kid in town = communication
– (on the chip)

Where’s the (new) programming model?
• Issue: what about the “old” software?

– => von neuman => shared memory syndrome
– But: issue is not access to memory but integrity of

memory
– But: issue is not bandwidth to memory, but latency
– Sequential programs have lost the information of the

www.altreonic.com 10

– Sequential programs have lost the information of the
inherent (often async) parallelism in the problem domain

• Most attempts (MPI, ...) just add a large
communication library:
– Issue: underlying hardware still visible
– Difficult for:

• Porting and Scalability
• Often application domain specific

The OpenComRTOS approach

• Derived from a unified systems engineering
methodology

• Two keywords:
– Unified Semantics

• use of common “systems grammar”

• covers requirements, specifications, architecture, runtime, ...

www.altreonic.com 11

• covers requirements, specifications, architecture, runtime, ...

– Interacting Entities (models almost any system)

• RTOS and embedded systems:
– Map very well on “interacting entities”

– Time and architecture mostly orthogonal

– Logical model is not communication but “interaction”

The OpenComRTOS project

• Target systems:
– Multicore, parallel processors, networked systems,

include “legacy” processing nodes running old (RT)OS

• Methodology:
– Formal modeling and formal verification

www.altreonic.com 12

• Architecture:
– Target is multi-node, hence communication is system-

level issue, not a programmer’s concern

– Scheduling is orthogonal issue

– An application function = a “task” or a set of “tasks”
• Composed of sequential “segments”

• Tasks synchronise and pass data (“interaction”)

www.altreonic.com 13

www.altreonic.com 14

The OpencomRTOS “HUB”
• Result of formal modeling
• Events, semaphores, FIFOs, Ports, resources, mailbox,

memory pools, etc. are all variants of a generic HUB
• A HUB has 4 functional parts:

– Synchronisation point between Tasks
– Stores task’s waiting state if needed
– Predicate function: defines synchronisation conditions and lifts waiting

www.altreonic.com 15

– Predicate function: defines synchronisation conditions and lifts waiting
state of tasks

– Synchronisation function: functional behavior after synchronisation:
can be anything, including passing data

• All HUBs operate system-wide, but transparently: Virtual
Single Processor programming model

• Possibility to create application specific hubs & services! =>
a new concurrent programming model

The generic hub as metamodel

Count

Synchronising

Owner Task

CeilingPriority

Buffer List

Predicate Action

Data needs to

be buffered

Prioity Inheritance

For semaphores

Synchronisation

For resources

16

W

L

W

L

Synchronising

Predicate

Generic Hub (N-N)

T T

TThreshold

Synchronisation

Waiting Lists

Similar to Atomic Guarded Actions
Or

A pragmatic superset of CSP

All RTOS entities are “HUBs”

Resulting programming model

OpenComRTOS - OpenVE - OpenTracer from www.altreonic.com 18

Rich semantics: _NW|W|WT|Async

• L1_Start/Stop/Suspend/ResumeTask
• L1_SetPriority
• L1_SendTo/ReceiveFromHub
• L1_Raise/TestForEvent_(N)W(T)_Async
• L1_Signal/TestSemaphore_X
• L1_Send/ReceivePacket_X L1_WaitForAnyPacket_X
• L1_Enqueue/DequeueFIFO_X

www.altreonic.com 19

• L1_Enqueue/DequeueFIFO_X
• L1_Lock/UnlockResource_X
• L1_Allocate/DeallocatePacket_X
• L1_Get/ReleaseMemoryBlock_X
• L1_MoveData_X
• L1_SendMessageTo/ReceiveMessageFromMailbox_X
• L1_SetEventTimerList
• … => user can create his own service!

“Strange” semantics: _Async

• Example:
L1_SendPacket_A (Port)
L1_ReceivePacket_A (Port)
….
L1_WaitForAnyPacket_W

• Asynchronous semantics are natural but tricky
• Sending async is easy to understand
• Receiving async: what does it mean?

www.altreonic.com 20

• Receiving async: what does it mean?
• But: packets are a limited resource

• => give each task a synchronisation credit = # packets
• When credit is depleted => resynchronise

• Very handy for:
• Drivers
• Implementing “select” semantics (ALT ? and ALT ! In CSP)
• But requires more control by programmer

Packets and Hubs
- From function calling to packets as placeholders

PutPacket_(N)W
Test on RC

GetPacket_N(W)
Test on RC

What application sees

www.altreonic.com 21

PutPacket_(N)W

Test on RC

GetPacket_N(W)

Test on RC

What application sees

What system sees

match

Unexpected: RTOS 5-10x smaller

• Reference is Virtuoso RTOS (ex-Eonic Systems)

• New architectures benefits:
– Much easier to port
– Same functionilaty (and more) in 10x less code

– Smallest size SP: 1 KByte program, 200 byts of RAM

– Smallest size MP: 2 KBytes

www.altreonic.com 22

– Full version MP: 5 KBytes

• Why is small better ?
– Much better performance (less instructions)

– Less power
– Frees up more fast internal memory

– Easier to verify and modify

• Architecture allows new services without changing the
RTOS kernel task!

Clean architecture gives small code: fits in on-chip RAM

OpenComRTOS L1 code size figures (MLX16)

MP FULL SP SMALL

L0 L1 L0 L1

L0 Port 162 132

L1 Hub shared 574 400

L1 Port 4 4

L1 Event 68 70

www.altreonic.com 23

L1 Semaphore 54 54

L1 Resource 104 104

L1 FIFO 232 232

L1 Resource List 184 184

Total L1 services 1220 1048

Grand Total 3150 4532 996 2104

Smallest application: 1048 bytes program code and 198 bytes RAM (data)
(SP, 2 tasks with 2 Ports sending/receiving Packets in a loop, ANSI-C)
Number of instructions : 605 instructions for one loop (= 2 x context switches,
2 x L0_SendPacket_W, 2 x L0_ReceivePacket_W)

Probably the smallest MP-demo in the world

Code Size Data Size

Platform firmware 520 0

- 2 application tasks

- 2 UART Driver tasks
- Kernel task

230

338

1002, of which

- Kernel stack: 100
- Task stack: 4*64

www.altreonic.com 24

- Kernel task
- Idle task

- OpenComRTOS full MP
(_NW, _W, _WT, _A)

338

3500

- Task stack: 4*64
- ISR stack: 64
- Idle Stack: 50

- 568

Total 4138 + 520 1002 + 568

Can be reduced to 1200 bytes code and 200 bytes RAM

Standard processors (32bit)
OpenComRTOS L1 code size figures in bytes - Os

Full support MicroBlaze
(100 MHz)

LEON3
(40 MHz)

ARM Cortex M3

SP MP SP SP

Hub shared 4756 5096 4904 2018

L1 Port 8 8 8 4

L1 Event 88 88 72 36

www.altreonic.com 25

L1 Semaphore 92 92 96 40

L1 Resource 96 96 76 40

L1 FIFO 356 356 332 140

L1 PacketPool 296 368 268 120

Total L1 services 5692 6104 5756 2398

Driver (IntC -Timer) 812 - 284 852 – 284 1224 - 536 -

Uart driver 932 -

Semaphore loop 33.64 usec 136.1 usec 52,66 usec

Interrupt latencies
• From IRQ to first useful instruction in ISR or Task
• Not a single figure, an application dependent histogram

IRQ -> ISR
Linear scale
100% CPU

IRQ -> Task
Linear scale
100% CPU

50 MHz
ARM M3

www.altreonic.com 26

100% CPU 100% CPU

IRQ -> ISR
Log scale
100% CPU

IRQ -> Task
Log scale
100% CPU

What influences Interrupt latency?
• Hardware:

• Context switch
• Bus congestion (multiple users)
• DMAs
• Peripherals disabling interrupts
• “Special” support: HW loops, HW call stack
• Interrupt controller

www.altreonic.com 27

• Interrupt controller
• Jump table
• Nesting capability, # int pins

• Software:
• Critical sections, interrupts disabling sections

• Data structures updating
• Kernel loop (must be as small as possible)

• In MP often multiple commands in kernel
• Compiler conventions

Program once, run anywhere

• Ultra low power:
• CoolFlux DSP core (24bit, Harvard)
• Code size full kernel: 2000w PM + 750w data
• Interrupt latency:

• IRQ to ISR: < 112 cycles
• IRQ to task: < 877 cycles

• Multicore capable

28

• Multicore capable
• Single chip multicore

• Intel SCC 48core “super computer on chip + NoC
switch” (in development)

• Heterogeneous targets:
• Win32+Linux+ARM+MicroBlaze+XMOS+LEON3+ …

demo programmed as single target

A Safe Virtual Machine for C
• Goal:

• CPU independent programming
• Low memory needs (embedded!)
• Mobile, dynamic code

• Results:
• Selected ARM Thumb2 instruction set of VM target

• Compactness• Compactness
• Widely used CPU
• 3.8 Kbytes of code for VM
• Executes binary compiled code
• Capable of native execution on ARM targets
• VM enhanced with safety support:

• Memory violations
• Stack violations
• Numerical exceptions

Safe VM set-up

30

Network infrastructure

Universal packet switching

• Another new architectural concept in
OpenComRTOS is the use of “packets”:
– Used at all levels

– Replace service calls, system wide

– Easy to manipulate in datastructs

– Packet Pools replace memory management

www.altreonic.com 31

– Packet Pools replace memory management

• Some benefits:
– Safety and security

– No buffer overflow possible

– Self-throttling

– Less code, less copying

Transparent communication
• Tasks only “communicate” via Hubs

• Real network topology
– Logical point-to-point links between nodes

– Node Rx and Tx link driver task for each link end

– Routing and gateway functionality

– Works on any medium: shared buses, “links”, “tunneling”

www.altreonic.com 32

– Works on any medium: shared buses, “links”, “tunneling”
through legacy OS nodes using sockets, …

– Heterogeneous and transparent parallel programming!

• Link driver tasks
– OpenComRTOS application task with (TaskInput) Port

– Driver task type per link type (UART, TCP/IP, …)

– Not present/visible on the (logical) application level

“Link” driver functionality

• Target/link specific communication implementation
– L0_RxDriverFunction – retrieve packet from “wire”

• E.g. socket read for Win32, Linux, ..
• E.g. buffered UART communication for embedded target

– L0_TxDriverFunction – put packet on “wire”
• E.g. socket write for Win32, Linux, ..

www.altreonic.com 33

• E.g. socket write for Win32, Linux, ..

• E.g. buffered UART communication for embedded target

– network <-> host byte ordering functions

– Normal ISR framework can be used as applicable

• But fully transparent for the application software

Virtual Single Processor programming model

www.altreonic.com 34

Tool support: Define Topology

www.altreonic.com 35

Tool support: Define Application

www.altreonic.com 36

Tool support: C code is generated

www.altreonic.com 37

Tool support: Run and trace

www.altreonic.com 38

Under the hood

P P

www.altreonic.com 39

KernelTask

DRV-T
DRV-T

Port

Port
Port

Port KernelTask

Heterogenous demo set-up

• Nodes: Leon3-WIN32-Linux-MicroBlaze

• Each “node” runs on instance of
OpenComRTOS

• Only changes are the node-adresses

• Source code everywhere the same:

www.altreonic.com 40

• Source code everywhere the same:
....

L1_PutPacketToPort_W (Port1)

...

L1_SignalSemaphore_W (Sema1)

...

Parallel sort

www.altreonic.com 41

Parallel matrix multiplication

www.altreonic.com 42

Roadmap

• Working on:
– Interaction Sequence Diagram editor

– Integration with MAST scheduleability analysis

– Flowchart editor with C Code generation

– Broadcast, barrier hubs

www.altreonic.com 43

– Broadcast, barrier hubs

– Protocol hubs:
– Composing protocols from micro-protocols

– Dynamic resource scheduling

– Transparent fault tolerance

– Back-end formal verification

Prototype Interaction Sequence Chart

www.altreonic.com 44

Conclusions

• OpenComRTOS is breakthrough “RTOS 2.0”
– Network-centric => system communication layer

– Priority or timer based scheduling => RTOS

– Formally developed

– Fully scalable, very safe, very small

– Better performance

www.altreonic.com 45

– Better performance

– Portable & user-extensible

– => Concurrent programming model

– => works for any type of “multicore” target

–

• Contact: Eric.Verhulst @ altreonic.com

From theoretical concept
to products

“If it doesn't work, it must be art.
If it does, it was real engineering”

46www.altreonic.com

